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Existence of a generalized Gaussian BirkhotT quadrature formula is proved for
a wide class of incidence matrices which satisfy the delayed P61ya conditions
and contain no odd non-Hermitian sequences in the interior rows. '" 1995 Academic

Press, Inc.

This paper deals with the existence of a generalized Gaussian Birkhoff
quadrature formula (GGBQF), Throughout the paper we shall use the
notation of [4]. Let E= (ei);':d. ~'~o be an incidence matrix with entries
consisting of zeros and ones and satisfying lEI :=Li.jeij<N+ I (here we
allow a zero row). Let g(x) be a strictly increasing function. It is natural
to ask when there exists a GGBQF of the form

ra(X; x) /(x) dg = I aij/Ii)(x,)
a t'ij= I

( I )

which is exact for P IV' the space of all polynomials of degree at most N,
where

(2)

and

II

a(X; x) = sgn TI (x -xY'
i~1

(3)

with certain nonnegative integers VI' ... , VII'

Many authors have studied this problem. Recently a lot of developments
and generalizations have been obtained. For full information on this subject
see the introduction and the references in [5]. Here we mention two main
results of them.
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THEOREM A [1]. Let U = span{Uo, ..., u,,} c c-"[ a, b] be an ET-system
and II' E C[ a, b] a positive weight function. Then for Vo ~ 0, v" + I ~ 0, Vi> 0,
i = 1, ... , n, such that N + 1 = 2:7:<: Vi' there exists a unique set of nodes X
for which the GGBQF

h n+lf u(X; x) u(x) w(x) dx = L
(J i=O

has the property

a i• 1',-1 =0,

VI 1

I aiju!.i)(x j ),

j~O

i = 1, ..., n.

UE U (4)

(5)

THEOREM B [4, Theorem 10.18; 2, Theorem I]. Let E be an (n + 2) x
(N + 1) matrix all of whose Hermitian sequences in the interior rows are odd,
and all of whose other interior sequences are even. rf the number of
Hermitian sequences in the interior rows 1 'S i 'S n is p, and if E satisfies the
delayed P6lya conditions with the constant p = p:

k 11+ 1

MdE):= L L eij~k+ I-p,
/~o i~O

k=O, ...,N, M".(E)=IEI=N+I-p, (6)

then there is a GGBQF ( I) with u = 1 for all I E P"..

Remark. As we know, a space U of dimension n is said to be a weak
Chebyshev space if each u E U has at most n - 1 sign changes. Meanwhile
U is nondegenerate if u E U with the property that u(x) = °on a nontrivial
interval of [a, b] implies u = 0. Then in the special case when Vo= V" + 1=°
and VI = ... = V" = 1 the conclusions of Theorem A remain true even if U
is a nondegenerate weak Chebyshev space of dimension N + 1 = n accord
ing to the following lemma, where such a space is called an IT-space.

LEMMA A [3, Theorem B, Theorem 1]. Let U = span{u I' ... , u,,} be an
IT-space in L 1[a, b], the space of all real-valued integrable functions on
[a, h]. Then there exists a unique set of points (2) such that

" fXi+ II (-I V. u(x) dx = 0,
;=0 .',

UE U.

In this paper we establish a GGBQF for a wide class of incidence
matrices which includes the above two matrices.
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For a given incidence matrix E = (eij)7:d. ;~o and each i, 0 ~ i ~ n + 1, let
IIi denote the smallest index) such that eij=O. Put

n+1

Q(X; xl:= n (X-X;)II',
'-=0

S(X; x) := sgn n (x - xi)I"·
;=1

(7)

The main result in this work is the following

THEOREM 1. Let an (n + 2) x (N + I) incidence matrix E sati4y the
delayed P61ya conditions (6) Ivith the constant p = p, 0 ~ p ~ n, and contain
no odd non-Hermitian sequences in the interior rows I ~ i ~ n. Then for any
prescribed p interior rows ik , k = I, ..., p, there exists a set of nodes (2) such
that (I) holds for all fE Pi\!' Ivhere

Vi={II;+I,
II ;,

i = ii, ... , i,I'

otherwise.
(8)

The proof of this theorem is a modification of the idea of proof of
Theorem 10.18 in [4, p. 148]. The following crucial lemma is an extension
of the key lemma in [4, Lemma 10.17, p. 147]. To state this result let L1
be the open simplex consisting of points X satisfying (2) and ;J its closure.

LEMMA. Let an (n + 2) x (N + I) incidence matrix E sati!>f)' the delayed
P6Iya conditions (6) with the constant p = p, p ~ I, and contain no odd non
Hermitian sequences in the interior rows I ~ i ~ n. Let

and

If some of the coordinates of X coincide, E is replaced by its corresponding
coalescence. Then

(a) G is a space of dimension p;

(b) G is a Chebyshev space;

(c) G has a basis that depends continuously on X.

Moreover, W is a weak Chebyshev space of dimension p and has a basis
that depends continuously on X.

Proof It is easy to see that G is in fact a set of polynomials. Since by
definition

W = {IQ(X; x)1 P(x) : PE G},
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the conclusions of the second part of the lemma follow immediately from
the first one. Statements (a) and (c) can be proved by the same arguments
as Lemma 10.17 in [4, p. 147]. Now let us show Statement (b).

Let a < y, < '" < Yp < b be arbitrary but fixed points taken so that
X n {y, , ..., Yp} = 0 and let Y = Xu { Y I , ... , Yp}. Let E * be obtained from
E by adding to it p Lagrangian rows. Obviously, E* satisfies the P61ya
conditions (i.e., the delayed P61ya conditions with the constant p = 0) and
is conservative [4, p. 10]. By the Atkinson-Sharma theorem [4, p. 10] the
pair E*, Yis regular. Now let PI(X), ... , Pp(x) be the fundamental polynomials
of interpolation for this pair corresponding to Ci~ = 1 and cij = O. Put
P= L:~~, CkPk #0. Suppose to the contrary that Q ~1(X; x) P(x) has p
zeros a:::;;z, < ... <zp:::;;b. If Zk=X i for some indices k, i, I :::;;k:::;;p;
0:::;; i:::;; n + I, then P(x;} = r(x i ) = ... = pi Jiil(X;} = O. In this case we add a 1
to the position (i, J.1;). If Zk ¢ X then add a new Lagrangian row. Let E' be
obtained from E by the above process. Then P is annihilated by E',
Z=Xu{z" ... , zp}. Since E' is also regular and IE'I=N+l, P=O, a
contradiction. I

Proofof Theorem 1. When p = 0 the theorem is trivial, since in this case
E is regular and hence the GGBQF (l) with arbitrary X holds for all
fEP N ·

Now let p > 0 and let E* be obtained from E by adding a I to the position
(i,J.1;) for i=i 1 , ••. , ip . Then for E* and arbitrary XELI the pair E*, X is
regular. Now let Aij(x):= Aij(X; x) be the fundamental polynomials of
interpolation for this pair corresponding to e;J = 1. Then we have

f(x) = L fli)(x;) Aij(X; x),
£',; = 1

Hence

where

ra(X; x) f(x) dg = L aijflil(x;),
a et = I

aij=ra(X;x)Aij(X;x)dg,
a

et = 1.

(11 )

(12)

To prove Theorem I it suffices to show that there exists an X satisfying (2)
such that

a;./i,=O, (13)
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To this end, with each X E A we associate the vector of functions

k = 1, ... ,p, (14)

where S(X; x) is defined in (7). Since by the Lemma (14) is a basis of
a nondegenerate weak Chebyshev space, according to Lemma A we can
define a continuous map Tz: A-> ,10 (the open simplex consisting of points
a<zl < ... <zp<b) by Z= TzX which is the unique solution
a < ZI < '" < zp < b satisfying

hlP 1f sgn TI (x-z k ) Q;(X;x)dg=O,
a k = 1

i= 1, ..., p. (15 )

As the proof in Theorem 10.18 in [4, p. 148], again we define a con
tinuous map X = T, Z of Ao into A such that

k= 1, ...,p (16)

and X satisfies (2).
Thus T = T] T z is a continuous map of A into itself. Now applying the

Brouwer fixed-point theorem it has a fixed point X E A, i.e.,

rrsgn IT (x - X;k)l Q;(X; x) dg = 0,
a l k = I

i= 1, ... ,p,

here we use the relations (16). By virtue of (3), (7), (8), and (10) the above
formulas become

ra(X; x) A;./I,(X; x) dg=O,
a

which by (12) is equivalent to (13). I

THEOREM 2. Let E be defined as in Theorem 1. If Vi - j is even for
1~ i,;:; n, then

sgnaij=a(X;x;+O).

Moreover, if 0,;:; j,;:; Vo - I, then

sgn aOj = a(X; a + 0)

and if °,;:; j ,;:; VII + 1 - 1, then

sgn all + I. j = (- 1) j a( X; b - 0).

(17)

(18 )

(19)
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i=n+l.

Proof Let E* be defined as in the proof of Theorem 1. For the pair
(i,j) given in the theorem let E' be obtained from E* by shifting the 1 in
position (i, vi -1) into the new position (0, vol and by dropping the I in
position (i,j). Then E' satisfies the conditions of the lemma with p = 1.
Applying the lemma we conclude that

sgn r(x - x J j fI (x - Xk)"k 1P( x)
l k ~ I J

k I' i

does not change sign in [a, b J, where P E P N satisfies

pli)(xi )=l, pUI(Xk)=O, e~/=l, e~/EE'.

Hence a( X; x) P(x) does not change sign in [a, b J, because Vi - j is even
for I~i~n. Since pli\Xi ) = I, we have that (x-x,)jP(x»O holds if
Ix - Xi I> 0 small enough. So for these x

sgn[a(X; x) P(x) J= a(X; x) sgn[ (x - xYJ

Ja(X;xi+O),
= 1(-1) j a( X; h - 0),

Setting f = P in (1) yields

h

au = f a(X; x) P(x) dg,
a

which implies (17), (18). and (19) for 1~i~n, i=O, and i=n+ 1,
respectively. I

Using Theorem 1 we can get an extension of Theorem B as follows.

THEOREM 3. Let E be an (n + 2) x (N + I) matrix all of whose non
Hermitian sequences in the interior rOIl's are even. rr the numher of odd
Hermitian sequences in the interior rows I ~ i ~ n is p, °~ p ~ n, and if E
satisfies the delayed P61ya conditions with the constant p = p, then there is
GGBQF (I) ll'ith a = 1 for all fE P/V'

Proof It suffices to prescribe the p interior rows ik , k = 1, ..., P which
contain odd Hermitian sequences. I
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